
© Copyright Ian D. Romanick 2008

26-February-2008

VGP352 – Week 8

⇨ Agenda:
 Noise
 Noise based procedural textures
 Wang tiles

© Copyright Ian D. Romanick 2008

26-February-2008

Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the

movie Tron
 Frustrated that everything in Tron looked so

“machine-like,” he wanted to get out of the "machine-
look ghetto."

© Copyright Ian D. Romanick 2008

26-February-2008

Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the

movie Tron
 Frustrated that everything in Tron looked so

“machine-like,” he wanted to get out of the "machine-
look ghetto."

⇨ Tron was not nominated for the Academy Award
for Special Effects because it “cheated” by using
computers

 What movie won?

© Copyright Ian D. Romanick 2008

26-February-2008

Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the

movie Tron
 Frustrated that everything in Tron looked so

“machine-like,” he wanted to get out of the "machine-
look ghetto."

⇨ Tron was not nominated for the Academy Award
for Special Effects because it “cheated” by using
computers

 What movie won?
 E.T. the Extra Terrestrial

 Defeating Blade Runner and Poltergeist

© Copyright Ian D. Romanick 2008

26-February-2008

Brief history of noise

⇨ In 1983 Perlin worked on creating a space filling,
apparently random signal function

 Needed to appear random
 Needed to be controllable
 Needed all the features to be approximately the same

size
 Needed all the features to be roughly isotropic
 Needed to have a range [-1, 1]

⇨ First presented as a course at SIGGRAPH '84
 The paper followed at SIGGRAPH '85
 The Academy Award for Technical Achievement

followed in 1997

© Copyright Ian D. Romanick 2008

26-February-2008

Using Noise

⇨ In Perlin's words, “noise is salt for
graphics.”

 Salt by itself is boring
 Without salt, food is boring too

Original image from http://en.wikipedia.org/wiki/Perlin_noise

http://en.wikipedia.org/wiki/Perlin_noise

© Copyright Ian D. Romanick 2008

26-February-2008

Using Noise

⇨ Noise is typically used in multiple frequencies
 Each frequency band is called an octave
 As octave frequency increases, the amplitude

decreases

NOISE p=∑
i=0

N−1 noise f i p

ai

© Copyright Ian D. Romanick 2008

26-February-2008

Using Noise

⇨ Add noise to boring functions or textures to make
them interesting

 Marble is the classic example

sin x∣NOISE y ∣

Original image from http://www.noisemachine.com/talk1/23.html, copyright Ken
Perlin

http://www.noisemachine.com/talk1/23.html

© Copyright Ian D. Romanick 2008

26-February-2008

Implementing Noise

⇨ Use GLSL noise function
 Most (all?) implementations are really bad
 Some go as far as to return a constant value for all

inputs
⇨ Implement noise in C, generate large noise

texture
 Has tiling artifacts
 Can consume a lot of texture memory

⇨ Implement noise in GLSL code
 Several implementations exist

 See GPUGems 2
 Most use several textures for tables
 Use 60 – 80 GPU instructions

© Copyright Ian D. Romanick 2008

26-February-2008

References

Perlin, K. 1999. Making Noise. Presented at GDCHardCore.
http://www.noisemachine.com/talk1/

Perlin, K. 2002. Improving noise. In Proceedings of the 29th Annual
Conference on Computer Graphics and interactive Techniques
(San Antonio, Texas, July 23 - 26, 2002). SIGGRAPH '02. ACM,
New York, NY, 681-682. http://mrl.nyu.edu/~perlin/noise/

Zucker, Matt. 2001. The Perlin noise math FAQ.
http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

http://www.noisemachine.com/talk1/
http://mrl.nyu.edu/~perlin/noise/
http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

© Copyright Ian D. Romanick 2008

26-February-2008

Break

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”
 If the tile selection is pseudo-random, as few as 32

tiles can have a very large repeat period
 Unlike mosaic tiles, texture tiles have to match at the

edges
 Either all tiles edges have to match or the selection algorithm

has to pick a tile that will match edges with its neighbors

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Edge Coloring

⇨ Name the four tile edges N, E, S, W
 The N/S edges can have one of K

v
 edge “colors”

 The E/W edges can have one of K
h
 edge “colors”

 A tile with an N edge of color X must be south of a tile with an
S edge of color X

 A tile with each possible combination of edge colors
must exist

 There must be at least K
v

2×K
h

2 tiles

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Tile Arrangement

⇨ Assuming we have a set of tiles...
 Generating tiles from a sample source image is a

larger topic than we have time for
⇨ Arrange tiles in a K

v
×K

h
 pattern in a 2D texture

 Neighboring tiles must obey edge coloring rules
 Even neighbors across border edges!

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Tile Arrangement

⇨ Given a pair of edge colors, the following place-
ment algorithm is use:

Index e1,e2={
0 if e1=e2=0

e1
22e2−1 if e1e20

e2
22e1 if e2e1≥0

e21
2−2 if e1=e20

e11
2−1 if e1e2=0

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate tile index

 O
h
 = t / T

h

 O
v
 = s / T

v

 Hash tile index to calculate edge colors
 C

s
 = H(H(O

h
) + O

v
) % K

v

 C
n
 = H(H(O

h
) + O

v
 + 1) % K

v

 C
w
 = H(O

h
 + H(O

v
 * 2)) % K

h

 C
e
 = H(O

h
 + 1 + H(O

v
 * 2)) % K

h

 Notice that C
e
(x, y) = C

w
(x + 1, y)

 Convert edge colors to row / column indexes

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate row / column position in texture

 t
base

 = I
h
 * T

h

 s
base

 = I
v
 * T

v

 Calculate texel offset within tile
 t

offset
 = t % T

h

 s
offset

 = s % T
v

 Sample the texture!
 Final coordinate is (s

base
 + s

offset
, t

base
 + t

offset
)

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Hash Function

⇨ Implement as a permutation table
 Use a texture rectangle that is 1 texel tall

 Use roughly 4x entries in table as possible edge colors
 More recent hardware can use uniform arrays

 Geforce 6 or Radeon X800

© Copyright Ian D. Romanick 2008

26-February-2008

Wang Tiles – Filtering Gotchas

⇨ Mipmap filtering can be a problem...
 The 1x1 level blends all of the tiles together...bad!!!
 Need to clamp the minimum LOD to the level lowest

level that doesn't blur across tile boundaries
 This is much easier with texture arrays

© Copyright Ian D. Romanick 2008

26-February-2008

Next week...

⇨ More procedural textures

© Copyright Ian D. Romanick 2008

26-February-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

